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This paper is concerned with the problem of finding a multiplier matrix g which 
converts a prescribed system of second-order ordinary differential equations to 
the Euler-Lagrange form. Sufficient conditions for the existence of a multiplier 
matrix are given in the form of an infinite system of linear algebraic equations, 
provided the entries of g may be regarded as components of a (0, 2) symmetric 
tensor field. As an application, conditions for the local existence of a metric 
tensor compatible with a given torsion-free connection are deduced. 

1. I N T R O D U C T I O N  

In general,  arbitrary systems of  second-order  ordinary differential 
equations o f  the form 

~ ' - f ' ( q , (1 ,  t)=O, i = l , . . . , s  (1) 

cannot  be represented as Eule r -Lagrange ' s  equations.  However ,  it is well 
known that  there are cases in which not  only one, but  rather several 
inequivalent  Lagrangian representations are allowed. This raises a number  
o f  problems concerning,  e.g., the analysis o f  the ambiguities in the 
Lagrangian descript ion and o f  their connect ion with the problem of  quantiz- 
ation, and the determinat ion o f  what  restrictions are to be imposed on the 
force term f in order  to ensure the existence o f  at least one Lagrangian 
funct ion yielding the equat ions o f  mot ion (1) (de Riffs et al., 1983; Marmo  
et al., 1977; Henneaux,  1982; Santilli, 1978). 

The present  paper  deals with the problem of  finding a nonsingular  
symmetr ic  multiplier matrix go(q, q, t) such that  the representat ion 

d OL OL 
go(qd - f J )  = at O(l' Oq i (2) 
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holds in correspondence with a suitable Lagrangian L. The necessary and 
sufficient conditions for the admissibility of (2) are usually referred to as 
Helmholtz conditions or self-adjointness conditions; among the equivalent 
formulations of these equations that are usually found in the literature, the 
most convenient for our purposes is given by (Santilli, 1978; Crampin, 1981 ; 
Sarlet, 1982; Douglas, 1941) 

where 

Ogo Ogik ~ / h ( O ) k  ~ / h ( O ) k  
at~k-- OC)~, ~;ik'*'j --~jk'*'i =0  (3a,b) 

dg O+ 1_ Of k ' 1 Of k 
dt 2gik-~qJ• i = ~  (3c) 

~ ( o ) k = d  afk 20fk 10 f  h Of k (4) 
J dtOdl j aq j 20~1 ~0(t h 

Helmoltz conditions have already been analyzed in a number of works, 
mainly concerned with the general theoretical framework of the inverse 
problem of Lagrangian dynamics, and a rather comprehensive survey of 
most recent achievements may be found in a paper by Sarlet (1982). On 
the other hand, several papers have also been devoted to the discussion of 
the inverse problem in connection with the existense of dynamical sym- 
metries and first integrals of motion (Sarlet et al., 1981; Sarlet et al., 1983; 
Sarlet, 1983; Schafir, 1981; 1982). This contribution is primarily interested 
in obtaining sufficiency criteria for the existence of a multiplier matrix, 
under the assumption that the equations of motion behave covariantly. 

To this aim, an infinite sequence of compatibility conditions for (3) is 
first derived in Section 2. Indeed, these equations are not sufficient to 
guarantee the existence of a multipliev matrix; however, the requirement 
of covariance for g gives rise to the additional restrictions to be placed on 
g in order to allow an efficient discussion of the existence problem. 

More specifically, it is shown that the entries gij transform as the 
components of a (0, 2) symmetric tensor field under changes of the general- 
ized coordinates iff they depend polynomially on the generalized velocities, 
with tensor coefficients depending on q and t (Section 3). This condition, 
in turn, gives rise to a new infinite sequence of linear equations for gu, 
which are referred to as invariance identities. Then it is found that algebraic 
consistency between invariance identities and compatibility conditions 
guarantees existence of a multiplier matrix (Section 4). 

An illustrative application of this result to the theory of gravitation is 
then exhibited (Section 5): namely, we obtain necessary and sufficient 
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conditions for the local existence of a metric tensor compatible with a given 
torsion-free linear connection. 

2. COMPATIBILITY CONDITIONS 

Suppose a generalized force f is given, and consider the associated 
Helmholtz conditions in the unknown multiplier matrix g. It is the main 
purpose of  this section to derive an infinite sequence of compatibility 
conditions for the system (3). Besides being of  intrinsic interest in them- 
selves, they are also needed to construct the linear system yielding sufficient 
conditions for the existence of g. 

To avoid undue complexity, it is convenient to define by recurrence 
the following quantities: 

C~(~+l~k_ dc~} ")k 1.T.(.)h o f  k , 1.+.~k of  h 
J dt ~wj Odl--g-t-~.VhOdl---7 (5) 

where n goes from 0 to infinity and Op~ ~ is given by (4). Then we can state 
the following result. 

Theorem 1. Necessary conditions for equations (3) to admit local 
analytic solutions are given by 

Ogik dp(n)k q_ O(~ n)k 
~qp ~ gig Oq---- 7 (i<-->j)=0 (6a) 

Ogik (i)(n) k q_ 01~) n)k 
oglP--j g,k O0 p - - ( i*->j)=0 (6b) 

g tl~ (n4_ 1) k /'# ik'~'j -- ~, <-->j) = 0 (6C) 

Og,k 1 0 [ Off\ 
OqJ q - ~ q k  ~ gip -~qj) -(i '~->j)=0 (7) 

where (i~->j) denotes the expression obtained by interchanging i and j in 
the preceding terms. 

Proof. The proof  of  (6) is given by induction on n. Accordingly, let us 
consider the case n = 0. Then equations (6a) and (6b) are, respectively, the 
O/Oq p and O/Oq p derivatives of  (3b). Equation (6c) follows from the O/Ot 
derivative of (3b), which reads 

Og, k ~,~(O) k 
,~(0)k_L_ ~'~--__L--_J _ (i'~->j) = 0 (8) Ot "~j - ,~ik Ot 

In fact, after insertion of the expression for OgJOt obtained from (3c), an 
application of (6a, b) and (3b) shows that (8) can be rewritten in the 
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equivalent form 

I'dcb(o)k , ,~-k ! ofh'] 
~ .  l ~'j __*..~..r~(O) h va +• --(i<--~j)=0 (9) 
S'kL dt 2 "*'j 0('1 h 2 "~h 061JJ 

In view of the definition (5), equation (9) reduces to (6c) with n = 0. 
Suppose now that (6c) holds with (n + 1) replaced by n. Then the proof  

of (6) is easily obtained by repetition of the procedure which led to the 
required conditions in the ease n = 0. 

In order to prove (7) it is convenient to recall the identity 

d oh 0 dh Oh Oh Off 
dtoglk-oglk dt Oq k ol~p oq k (10) 

which holds for any function h(q, O, t). Then, substitution of go for h into 
(10) and comparison with (3c) yields 

d Og 0 [ ~ + O g o O f "  t_1 0 / , of'+ Off~ ] 
dtOok-- l .Oq OdlPOgtk ~ - ~ l g ~ . - ~  gjp~q~,]j (11) 

After repeated use of (3a) and relabeling of the indices, equation (11) leads 
to (7). �9 

Equations (6) and (7) may be used to select a large family of generalized 
forces f for which the Euler-Lagrange representation (2) is not allowed. 
In fact, if we recall that every matrix ~bJ ")k depends only on the given data 
and their higher-order derivatives, then we may regard equations (3), (6), 
and (7) as a linear system that can be solved algebraically for the elements 
of the multiplier matrix and their derivatives, in correspondence with 
increasing values for n. Hence, as soon as any incompatibility is found, we 
conclude that equations (1) cannot be represented as Lagrange's equations. 

It is also to be remarked that the linear system under investigation 
becomes overdetermined in correspondence with very small values of n: 
for instance, we can already find overdetermination in the case n = 0, if the 
dimension of the configuration space is greater than 3. Accordingly, it 
follows that inner inconsistencies are very likely to appear in connection 
with arbitrarily chosen data f, and this implies that "in general" there exists 
no variational formulation for a system of the form (1), in complete agree- 
ment with conclusions already drawn by Henneaux (1982) and Henneaux 
and Shepley (1982). 

The previous comments are in close analogy with certain remarks 
already made by Sarlet (1982). The connection with Sarlet's approach 
becomes even more transparent when we observe that (6c) and (7) corre- 
spond, in a sense, to equations (39k) and (38c) in Sarlet's (1982) paper. 
However, Sarlet's conditions are derived in a rather different framework: 
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namely, an investigation of  the Cauchy problem for (3) leads to the con- 
clusion that the existence of  a multiplier matrix is mathematically equivalent 
to a proper  choice of the initial values for g at the time t = to, which in turn 
are characterized as solutions to an overdetermined first-order system involv- 
ing also an infinite family of algebraic conditions. Additional comments on 
these points, as well as an alternative derivation of the compatibility condi- 
tions, can be found in Caviglia (1984a). 

As a final comment, it is worthwhile to observe that, in general, algebraic 
consistency of the linear system (3), (6), (7) does not seem to be a sufficient 
condition for the solvability of the self-adjointness condition, so that we 
should look for the possibility of imposing supplementary restrictions. 
Indeed, on using Sarlet's reduced formulation (Sarlet, 1982) it has been 
shown that consistency of (6c) leads to the determination of a multiplier 
matrix, provided f depends at most linearly on the generalized velocities 
(Caviglia, 1984b). In the present approach we explore the possibility of 
introducing natural constraints on the multiplier matrix, rather than on the 
force term. More precisely, it will be shown in the following sections that, 
if the gi~s behave covariantly under changes of the generalized coordinates, 
then a number of linear identities in g~---the so-called invariance identities-- 
must necessarily be satisfied. The inner consistency of the system formed 
by equations (3b), (6) and the invariance identities yields the required 
sufficient conditions for the existence of g. 

3. COVARIANCE REQUIREMENT 

So far, the inverse problem has been dealt with in full generality. 
However it appears that, within the context of theoretical mechanics, the 
expression in the left-hand side of equation (1) may usually be regarded 
as the ith component of a contravariant vector. On the other hand, it is 
also well known that the so-called Euler-Lagrange expressions 

d OL OL 

dt o(t k oq k 

constitute the components of a covariant vector with respect to changes of 
the generalized coordinates (Lovelock and Rund, 1975). Therefore it is not 
surprising that equations (1) have to be multiplied by an integrating matrix, 
in order to ensure consistency, before any reasonable attempt of finding a 
variational formulation can be pursued. However, it seems that there has 
been no systematic analysis of the consequences that can be drawn from 
the assumption that the multiplier matrix g behaves as a symmetric covariant 
tensor under changes of the generalized coordinates. Hence, this section is 



382 C a v i g l i a  

mainly devoted to the determination of the restrictions on the form of g 
that are imposed by the covariance requirement. 

To this aim, let us preliminarly introduce a new family of generalized 
coordinates ~J related to the original coordinates qk by 

~j = ~j(qk), qk = qk(0j) (12) 

The  generalized velocities constitute the components of a contravariant 
vector, that is, 

~J = JJkO k (13) 

where 

�9 r q ( 1 4 )  oO j _ o " 

Oq k '  K p - o ~ p  

Then it turns out that the entries go(q, (1, t) of the multiplier matrix may be 
regarded as components of a tensor field of type (0, 2) if[ the following 
relation, 

^ ^ h  -"  r P guv(q , Jh{li, t) = grp(q i, q', t ) K , K ~  (15) 

holds for any transformation of the form (12), where (14) has also been 
taken into account. On appealing to techniques that have already been 
applied to field theories (Lovelock and Rund, 1975; Anderson, 1978, Horn- 
deski, 1981), let us consider the O/O{l j and the a/OJ'~ derivatives of (15). We 
obtain, respectively, 

Og,.v Ogrp r p 
J~ OO--W= 04--- 7 K.K~ (16) 

~guv e, h ~ b  .i --  r b p r p b ~qh o,~o, q - g r p ( - K , , K . K . -  K .K ,~K~)  (17) 

It follows from (16) that the partial derivatives Ogo/Oq p yield the 
components of a tensor field of type (0, 3). By taking further derivatives 
with respect to the generalized velocities it may be shown that in general 

OP grj 

O ( t a l  . . . 0 4  % - g o ~ ,  . . . .  ~ = g(o . . . . . .  p )  ( 1 8 )  

where round brackets denote symmetrization of the indices enclosed, and 
g ....... % is a covariant tensor. As a matter of fact, equation (18) implies 
symmetry with respect to the indices a~ . . .  ap; however, the condition of 
total symmetry follows from (3a). 
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A ~,h After substitution of  the expression for Oguv/Oq obtained from (16), 
(17) yields 

OguV ~lb b b 
~4a = --gay6. -- ga.6v (19) 

from which it follows that 

Ogu~ . a 
q = - 2 g . v  (20) 

On multiplying equation (19) by c) ~ and comparing with (20) it follows that 

2g~,vqb = .a b , a  b q ga~8,, + q g~,,,8,~ 

which implies 

( s -  l)g,aq" : 0 (21) 

The last condition and the arbitrariness of  qa contradict the nonsingularity 
requirement on g if s # 1 ; notice that it is not restrictive to assume s > 1 
because the inverse problem of Lagrangian dynamics in one degree of 
freedom has been completely solved by Darboux. Therefore, taking also 
into account (18), it follows that g is allowed to depend on q only through 
a tensorial invariant, in which case equation (17) reduces to an identity. 
Namely, the most general expression for gij reads 

h 

go .= E g~ . . . . .  ~dl a , . . . ( t  % (22) 
p=O 

with g~ .. . . .  ~,(q, t) totally symmetric covariant tensor. The previous dis- 
cussion is summarized in the following theorem. 

Theorem 2. The multiplier matrix g behaves as a covariant tensor under 
the transformation (12) iff it is of the form (22). 

4. INVARIANCE IDENTITIES AND THE SOLVABILITY OF THE 
H E L M H O L T Z  CONDITION 

This section aims at exhibiting an infinite sequence of families of 
invariance identities that may be generated under the assumption that there 
exists a multiplier matrix given by (22). It is also shown that algebraic 
consistency of a linear system formed by the invariance identities and the 
compatibility conditions (6) is sufficient to ensure the existence of  a tensorial 
multiplier matrix. Since the specific details of our analysis to heavily depend 
on the value of the index h in the expression (22) for g~, we concentrate 
our attention on the simplest cases, namely, h -- 0 and h = 1. 
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Let us consider a multiplier matrix 

g~J = go(q, t) (23) 

such that equations (3) are identically satisfied. Then the explicit expression 
of (3c) reads 

ag o ._ og 0 1 [ ofk+ ofk'~ 
-~ +q"~--~qp+~tgik~--~ g jk~7)  = 0  (24) 

from which it follows that (3c) is mathematically equivalent to 

Ogo 4_ 1 [ 02f k 02f k 
Oq h 2 I t g ~ g ~ + g J g ~ ]  = 0  (25) 

og~j4_! ( ~ ~ ~ k ) 
Ot 2 qp g'kogtVOgl--------7+gJkOglPO0'] 

1[ Ofk+ O f ~  
+-2 oq I 

kgik-~ gjk = 0  (26) 

In fact, (25) is simply the 0/aq h derivative of (24), whereas (26) follows 
from (24) after substitution of (25). Conversely, multiplication of (25) by 
t~ h and addition of (26) yields (24) again. 

We are now in a position to describe a step-by-step procedure leading 
to the determination of the required sequence of sets of integrability condi- 
tions that are to be fulfilled by g as a consequence of assumption (23). To 
find the identities pertaining to the first family F~, it is convenient to rewrite 
equations (25) and (26) in the more compact form 

l[ 02f k , o2f k ~ (t h 
d g i j + i t g i k ~ " e g ,  k ~ 7 ( d q  h -  dt) 

1 [ o f  k ' ofk~ 
+~ t gik-~y• gjk~--07] dt=O (27) 

so that the integrability conditions are easily obtained by taking the exterior 
derivative of (27); in view of (25) and (26) their explicit expression reads 

03f k 
gik oqPOqhOq j k ( i ~-->j ) = 0 (28a) 

[ aV k [ 03f g 1 0 V  k O2ff 1 02fk r o V r ~  
gikLoto-~glJ "t- g]Ptoqh-o~ooJ +2c30P00 r oglhogl j ? 0 ~ - ~ 7 ~ ]  

o2/  o s" +!~ o2/  ] 
oqhOgl s 20gtP oglhOdl s 20giS OOhO-----O"J +(i+->j)=O (28b) 
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{ 03f k 03f k 1 a2f k 02f~ 
gik\oqPO(lho([ j oqhO(lPO{l j 2aqPaq r at]ht~ j 

1 \ 
+20qhOq ~ 0 - ~  j )  + (i~-~j) = 0 (28c) 

Equations (28) constitute the family F~. Differentiation of every equation 
of F~ with respect to each independent variable and substitution from (25) 
and (26) yields the identities belonging to F2. Repeated use of this procedure 
gives rise to an infinite sequence of families of  linear equations for the 
components of  g, with coefficients depending on higher-order derivatives 
of the given data f These conditions have already been referred to as 
invariance identities. In so doing we have adopted Lovelock and Rund's 
(1975) terminology, because equations (28) and their consequences are 
identically satisfied whenever the system (1) admits a variational formulation 
and g is a covariant tensor of the form (23). 

To complete our analysis of the case h = 0, we shall now turn to the 
role played by the invariance identities in the problem of determining 
whether the system (1) is derivable from a variational principle or not. More 
specifically, suppose we are looking for a multiplier matrix independent of 
q. Then equations (3) are equivalent to the mixed system consisting of the 
total differential equations (27) and of  the finite restrictions (3b). The 
integrability conditions for the system (27), (3b) are obtained by the 
same procedure that led to the determination of the invariance identities 
(Eisenhart, 1961), with the only exception that equations (3b) are now 
included in the set F~, from which it follows that F2 will also contain the 
derivatives of  (3b), and so forth. Accordingly, the integrability conditions 
are given by the invariance identities plus another suitable sequence of 
restrictions; it is worth noting that such additional equations can be obtained 
by substitution into (6) of  the proper expressions for the partial derivatives 
of  the components of g. 

Denoting by ~7 the algebraic linear system in the unknowns gij obtained 
by the above procedure, we can summarize the previous discussion as 
follows. 

Theorem 3. There exists a multiplier matrix independent of q iff the 
linear system ~ is compatible. 

As a first practical comment to this result, let us point out that a definite 
answer as to the compatibility of ~ can always be given in a finite number 
of steps. More specifically, let us consider FI: if F~ is not compatible, no 
solution independent of q is allowed. If  F~ is compatible, consider F2: if 
F2 is a consequence of F~ then the algebraic consistency of 5f is ensured; 
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otherwise, F2 introduces additional restrictions, and hence the compatibility 
between F~ and F2 is to be discussed following the same procedure already 
described for Fl. Since there are exactly S = s(s + 1)/2 unknowns, no more 
than S steps are required before either compatibility or incompatibility for 

can be proved. 
Secondly, we may rephrase our result by stating that algebraic con- 

sistency between the compatibility conditions determined in Section 2 and 
the invariance identities guarantees the existence of a multiplier matrix 
independent of 0. Of course, it is to be noted here that equation (7) is 
identically satisfied in view of (25) and (26). 

Thirdly, we observe that the condition of independence of g on q, 
although highly restrictive from the mathematical viewpoint, is however 
sufficient to allow the investigation of those classes of holonomic systems 
that are usually dealt with in the framework of classical mechanics (Arnold, 
1978). 

Now, let us conclude this section with a few remarks concerning the 
case h = 1. Namely, if we consider a multiplier matrix of the form 

go = go(q, t)+ gob(q, t)gl h 

where gob = g(Oh), then (3c) can be shown to be equivalent to 

(29) 

where 

A 

Og~ = A o (30a) 
Ot 

Ogo "l -OgOh = Bob (30b) 
Oq h Ot 

ag~ t - ~  = Cob t (30c) Oq h Oq 

Cob, = 1 oEf p 1 ( oEf k 02f g 
--2 gOP oohodl' 2 gikt Od/Odl h ~-gikh odltO------'--qj 

03f g \ 
+ gik aq h- -~a~)  +(i~-~J) 

1 1[ ofk+ 02f k ~ + 
BOh = --~ Cohflt---~g,kh-'o-~ gik oqho~lj) (i*"~j) 

1 h , ofk~ Ao = _.~ ( nOhl ~ .~ !4 Cohflh glt + go~fh • g'k-~q ~] + ( i ~--~ j) 

(31 a) 

(31b) 

(31c) 
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Equations (30) constitute the analog of  (25) and (26), but cannot be 
written as total differentials of  the functions go and gOh" However, one can 
introduce auxiliary unknowns Uuh(q, t) and Vght(q, t) such that 

d~, U = A o. dt + ( Boh --  Uijh ) d q  h (32a) 

dgoh = Uoh dt + ( C~ht + Veht) dq t (32b) 

Then it may be shown that the integrability conditions for (32) may be 
written in the form of  total differentials for u and v, and hence we are 
reduced to the situation already examined in the case h = 0. Accordingly, 
we will not proceed further to the investigation of  this point, which involves 
rather long calculations. We only remark that the reduction of  the existence 
problem to the compatibility of a linear system is not peculiar of the case 
h -- 0, because similar results also hold when h -- 1, and may possibly be 
extended to arbitrary values of h. 

5. AN APPLICATION TO THE THEORY OF GRAVITATION 

In this section we consider an s-dimensional manifold endowed with 
a linear torsion-free connection locally described by the so-called connection 
coefficients Fjk = Fjk(q). We will derive sufficient conditions for the local 
existence of a nonsingular metric tensor go(q)  such that F is the Levi-Civita 
connection of  g, i.e., F is determined by the condition that parallel transport 
preserves the scalar product  defined by g. 

In the four dimensional case, the above problem is related to the 
analysis of  the foundations of the theory of  gravitation. For example, 
according to Trautman's (1966) formulation of  the principle of  equivalence, 
the motions of  freely falling particles endow space-time with an affine 
connection which is the only symmetric affine connection whose geodesics 
coincide with the world lines of  free fall. Thus, the characterization of  the 
connections derivable from a metric is strictly related to the determination 
of  allowable trajectories of  falling particles in space-time. 

The relationship with the inverse problem of the calculus of variations 
is given by the fact that the metric tensor g is simply introduced into our 
analysis as a multiplier matrix for the equation of the geodesics of  the 
assigned connection. Namely, we look for a tensor go (q) such that the system 

go( ij j + FJhkglh gl k) = 0 (33) 

may be expressed in the form of Euler-Lagrange's equations. Furthermore, 
the condition that g does not depend on 0 allows a determination of g 
based on the results of  Section 4. More specifically, substitution into (25) 
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and (26) of the condition 

yields 

f k  = _r h4,0h (34) 

Og~j = gikr~h + gJ,kh (35) Oq h 

0go= 0 (36) 
Ot 

respectively. Equation (35) can be used to prove that the connection 
coefficients coincide with the Christoffel symbols of g, whereas (36) shows 
that g is independent of t, as required. 

We now proceed to the construction of the linear system ~. When (34) 
is substituted into the integrability conditions (28), it is found that (28a, b) 
are identically satisfied; on the contrary, (28c) can be shown to read 

k k gikR~hp + g~kR ihp = 0 (37) 

where Rkhp is the curvature tensor of the given connection. Equation (37) 
expresses the fact that a curvature tensor which is generated by a metric 
connection is skew in the first pair of indices; in our approach it is simply 
the result of the first step in the procedure for the generation of the invariance 
identities. Since (37) does not depend on 0 and t, in the second step it is 
only to be differentiated with respect the qs. Then, on comparing with (35) 
and (37) one finds 

k k 
gik V r R  jhp d- gjk V r R  ihp = 0 ( 3 8)  

where V, denotes the covariant differentiation operator. By repeated applica- 
tion of the above procedure, we conclude that the invariance identities may 
be written as 

k v r R k i h p = O  (39) gik V ro �9 . . V r~R jhp -.}- gjk V ro �9 . . 

where the indices ri go from 0 to infinity. 
In order to find the expressions of (3b) and (6), let us observe that 

(34), (4), and (5) yield 

(~)~O)k -~. _ _ 2 R k t j q  h ( l Z ,  qb~n)k = _ _ 2 V r ~ . . .  Vrngkl j~lr l  . . . t~r l~h~ll 

(40a,b) 

Then (3b) is easily found to be equivalent to 

k k 
gikR(h t ) j  -- g jkR(h t ) i  = 0 (41) 
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Making use o f  the cyclic identity R~h~jl = 0, which holds because R is the 
curvature tensor  o f  a symmetr ic  connect ion,  it may  be shown that  (41) is 
mathemat ical ly  equivalent  to (37). Accordingly,  the equat ions that  may be 
obtained by differentiation o f  (41) and which correspond to the family (6), 
are equivalent  to the equat ions belonging to the set (39). Thus we conclude 
that algebraic consistency of  the linear equat ions (39) in the unknown  
components  o f  the metric tensor  is a sufficient condi t ion for the existence 
o f  a metric. The metric so determined may depend  on a certain number  o f  
arbitrary constants;  these degrees o f  f reedom could possibly be used to 
satisfy a pr ior i  requirements on the signature o f  g. 

It seems that  the above procedure,  aiming at a characterization o f  linear 
torsion-free connect ions  compatible  with a metric tensor, is simpler than 
the approach  proposed  by Cheng and Ni (1980), even though it does not  
give much  insight into the intrinsic geometrical  meaning of  the integrability 
condit ions,  which however  has been rather extensively analyzed by Schmidt  
(1973). 
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